fiber optic transceivers, fiber optic cables, fiber optic network solution, fiber optic network, fiber optic products, data center solution, data center optic network, direct attach cables, active optical cables
Scroll to Top
Back to top
A 10Gtek Authorized Online Store
0 Item(s)
×

You have no items in your shopping cart.

CWDM-MUX8A= MUX/DEMUX8

Payment:
Paypal or Credit/debit card
Wire Transfer, West Union | See details
Returns:
Satisfactory return or item exchange | See details
Guarantee:
Money back guarantee | See details
Warranty:
Limited Warranty | See details
Volume pricing:
If you need large order volume, please apply for a business account or contact us to enjoy preferential policies.
SKU#:CWDM-MUX8A=C
Price:
$700.00
Quick Overview:
8-channel (1470, 1490, 1510, 1530, 1550, 1570, 1590, and 1610nm) multiplexer/demultiplexer (with monitor ports option) ports and LC connectors
Lead time = 5-10 Days
10Gtek Made in China.
Qty:

CWDM-MUX8A= MUX/DEMUX8

  • CWDM-MUX8A= MUX/DEMUX8
Processing Time
Processes in 24 hours: Processing Time is guaranteed to be shorter.
Typical Processing Time: 1-2 weeks
Shipping Time
FedEx Overnight: Within 1-4 business days
DHL: Within 2-6 business days
EMS: Within 4-15 business days
UPS: Within 2-5 business days
Hong Kong Post Airmail: Within 10-30 business days
Payment Methods
FiberOnSale FiberOnSale FiberOnSale
FiberOnSale Paypal western
Wire Transfer    
CWDM-MUX8A= MUX/DEMUX8

The 10Gtek’s WDM series comprises a set of CWDM passive modules mechanically compatible with the 10Gtek’s CWDM chassis (part number CWDM-CHASSIS-2=) and a 1300/1550 nm splitter cable. Compared to the previous 1000BASE-CWDM series of passive filters, this new set of devices sports a greatly reduced insertion loss (up to 50 percent), "power-tap" ports to allow live monitoring and troubleshooting of the CWDM signals, as well as the mixing of 1300-nm CWDM signals on the same fiber infrastructures.

10Gtek’s CWDM solution applications:The 10Gtek’s CWDM solution based on CWDM gigabit interface converters (GBICs) and Small Form-Factor Pluggables (SFPs) and passive modules allows enterprise companies and service providers to provide scalable and easy-to-deploy Gigabit Ethernet and Fibre Channel services in their networks. The product set helps enable the flexible design of highly available and scalable multiservice networks.
The 10Gtek’s CWDM GBIC SFP solution is a convenient and cost-effective solution for the adoption of Gigabit Ethernet and Fibre Channel in campus, data-center, and metropolitan-area access networks.
Because of the flexibility of the passive devices, 10Gtek’s CWDM solution helps enable the deployment of a variety of topologies to multiplex up to eight different wavelengths on the same pair of fibers in protected or unprotected configurations. A connection between two endpoints is protected when it is associated with two channels (typically of the same wavelength) traveling on diverse fiber routes (for example, clockwise and counterclockwise in ring configurations or on separate fibers in point-to-point scenarios). Single-wavelength OADMs are equipped with two channels traveling different network paths (east and west) to offer redundancy or protection in rings. On the other hand, because CWDM-MUX8A= and CWDM-OADM4-x= have only a single network port (that is, one fiber path), two CWDM-MUX8A= or two CWDM-MUX4-x= are required to connect to redundant (protected) fiber routes.
Figures 1 through 10 illustrate the numerous protected and unprotected deployment scenarios of the Cisco CWDM solution with the Cisco WDM series of passive devices. The following conventions are adopted in the figures:

• Colored circles represent transceivers (GBIC or SFP) at the corresponding color-coded wavelength connected to the filter equipment port.

• N indicates the network port on the CWDM-MUX8A= and CWDM-OADM4-x=.

• P indicates the pass port on the part number CWDM-OADM4-x=.

• E and W indicate the network east and network west ports on the WDM-OADM1-xxxx=.


Figure 1. Point-to-Point Configurations with 4- Channel and 8-Channel Passive Devices




Figure 2. Point-to-Point Configuration with 4-Channel OADMs and Regeneration




Figure 3. Unprotected Bus Configurations with 4-Channel and 1-Channel OADMs With and Without Regeneration




Figure 4. Protected Hub-and-Spoke Configuration with 8-Channel Multiplexer/Demultiplexer and 4-Channel OADMs




Figure 5. Protected Hub-and-Spoke Configuration with 8-Channel Multiplexer/Demultiplexer and 4-Channel and 1-Channel OADMs




Figure 6. Protected Meshed-Ring Configuration with 4- Channel and 1-Channel OADMs




Figure 7. Protected Meshed-Ring Configuration with 8-Channel Multiplexer/Demultiplexer and 1-Channel OADMs




Figure 8. Mixing 1300-nm and CWDM in Point-to-Point Configuration with 1300-nm OADM Transparency




Figure 9. Mixing 1300-nm and CWDM in Point-to-Point Configuration with WDM Splitter Cable




Figure 10. Mixing 1300-nm and CWDM in Protected Rings with WDM Splitter Cable



Figure 11. WDM Splitter Cable for Non-CWDM Applications



Features and Benefits:The 10Gtek’s WDM series of CWDM devices offer numerous improvements over the previous generation of devices:
1. Lowest optical insertion loss (refer to Table 2 for details)-Compared to the previous generation of CWDM filters, the insertion loss is reduced up to 50 percent, depending on the model. This translates into much longer distances in both point-to-point and ring configurations.
2. Addition of "monitor" ports on every network port of multiplexers and OADMs as well as on the pass port on OADM4-x to simplify turn-up operations of CWDM networks-The monitor ports also can be used for in-service monitoring of the CWDM signals by means of an optical spectrum analyzer or a power meter.
3. Addition of two 4-channel OADM types for added flexibility: part number CWDM-OADM4-1 to cover the 1470, 1490, 1510, and 1530 channels and part number CWDM-OADM4-2 to cover the 1550, 1570, 1590, and 1610 channels.4. LC/UPC connectors
5. 1300-nm transparency-OADMs are now transparent to "traditional" 1300-nm channels. In other words, the 1300-nm signals can pass through the OADMs with a well-controlled loss. This feature helps enable configurations where CWDM can share the same fiber with traditional SONET/SDH services running on the 1300-nm wavelength.
6. Addition of a WDM splitter (or Y-cable) to multiplexer and demultiplexer channels in the 1300- and 1550-nm ranges-The WDM splitter cable can be used with CWDM optics or with standard 1550 optics. This Y-cable is another tool to integrate on the same fiber infrastructure CWDM with traditional SONET/SDH services running on the 1300-nm wavelength.


Figure 12 Front-Panel Port Configurations of the CWDM-MUX8A, CWDM-OADM4-x, and CWDM-OADM1-xxxx) 




Figure 13. WDM Splitter Cable


Our Factory
FiberOnSale fiber optical Production Environment
Production Environment
FiberOnSale fiber optical Production Environment 2
Production Environment
FiberOnSale fiber optical Standardized Production Line
Standardized Production Line
FiberOnSale fiber optical Standardized Production Line 2
Standardized Production Line
FiberOnSale fiber optical Copper Cable Compatible & Application Test
Compatible & Application Test
FiberOnSale fiber optical Transceivers Compatible & Application Test
Compatible & Application Test
FiberOnSale fiber optical Transceivers Packing
Packing
FiberOnSale fiber optical Copper Cable Packing
Packing
FiberOnSale fiber optical Environment Testing
Environment Testing
FiberOnSale fiber optical cables Warehouse
Warehouse
FiberOnSale fiber optical Transceiver Warehouse
Warehouse
FiberOnSale fiber optical patch cord Warehouse 3
Warehouse